Extension of the application of conway-maxwell-poisson models: analyzing traffic crash data exhibiting underdispersion.
نویسندگان
چکیده
The objective of this article is to evaluate the performance of the COM-Poisson GLM for analyzing crash data exhibiting underdispersion (when conditional on the mean). The COM-Poisson distribution, originally developed in 1962, has recently been reintroduced by statisticians for analyzing count data subjected to either over- or underdispersion. Over the last year, the COM-Poisson GLM has been evaluated in the context of crash data analysis and it has been shown that the model performs as well as the Poisson-gamma model for crash data exhibiting overdispersion. To accomplish the objective of this study, several COM-Poisson models were estimated using crash data collected at 162 railway-highway crossings in South Korea between 1998 and 2002. This data set has been shown to exhibit underdispersion when models linking crash data to various explanatory variables are estimated. The modeling results were compared to those produced from the Poisson and gamma probability models documented in a previous published study. The results of this research show that the COM-Poisson GLM can handle crash data when the modeling output shows signs of underdispersion. Finally, they also show that the model proposed in this study provides better statistical performance than the gamma probability and the traditional Poisson models, at least for this data set.
منابع مشابه
Application of the Conway-Maxwell-Poisson generalized linear model for analyzing motor vehicle crashes.
This paper documents the application of the Conway-Maxwell-Poisson (COM-Poisson) generalized linear model (GLM) for modeling motor vehicle crashes. The COM-Poisson distribution, originally developed in 1962, has recently been re-introduced by statisticians for analyzing count data subjected to over- and under-dispersion. This innovative distribution is an extension of the Poisson distribution. ...
متن کاملA useful distribution for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution
A useful discrete distribution (the Conway–Maxwell–Poisson distribution) is revived and its statistical and probabilistic properties are introduced and explored. This distribution is a two-parameter extension of the Poisson distribution that generalizes some well-known discrete distributions (Poisson, Bernoulli and geometric). It also leads to the generalization of distributions derived from th...
متن کاملTRB Paper #11-2877 Examining the Crash Variances Estimated by the Poisson-Gamma and Conway-Maxwell-Poisson Models
متن کامل
Generalised count distributions for modelling parity
BACKGROUND Parametric count distributions customarily used in demography – the Poisson and negative binomial models – do not offer satisfactory descriptions of empirical distributions of completed cohort parity. One reason is that they cannot model variance-to-mean ratios below unity, i.e., underdispersion, which is typical of low-fertility parity distributions. Statisticians have recently revi...
متن کاملCharacterizing the Performance of the Bayesian Conway-maxwell Poisson Generalized Linear Model
This paper documents the performance of a Bayesian Conway-Maxwell-Poisson (COM-Poisson) generalized linear model (GLM). This distribution was originally developed as an extension of the Poisson distribution in 1962 and has a unique characteristic, in that it can handle both under-dispersed and over-dispersed count data. Previous work by the authors lead to the development of a dual-link GLM bas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Risk analysis : an official publication of the Society for Risk Analysis
دوره 30 8 شماره
صفحات -
تاریخ انتشار 2010